Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(2): 212-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622091

RESUMO

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.


Assuntos
Antineoplásicos , Benzoquinonas , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Antioxidantes/farmacologia , Compostos Organofosforados/farmacologia , Plastoquinona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antineoplásicos/farmacologia , Mamíferos/metabolismo
2.
ACS Omega ; 9(10): 11551-11561, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496966

RESUMO

Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-ditert-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction. SF-C5-TPP with a pentamethylene linker between SF6847 and TPP, stimulating respiration and collapsing membrane potential of rat liver mitochondria at submicromolar concentrations, proved to be the most effective uncoupler of the series. SF-C5-TPP showed pronounced protonophoric activity on a model planar bilayer lipid membrane. Importantly, SF-C5-TPP exhibited rather low toxicity in fibroblast cell culture, causing mitochondrial depolarization in cells at concentrations that only slightly affected cell viability. SF-C5-TPP was more effective in decreasing the mitochondrial membrane potential in the cell culture than SF6847, in contrast to the case of isolated mitochondria. Like other zwitterionic uncouplers, SF-C5-TPP inhibited the growth of Bacillus subtilis in the micromolar concentration range.

3.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353515

RESUMO

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Assuntos
Mitocôndrias Hepáticas , Fósforo , Animais , Mitocôndrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Brometos/metabolismo , Metilação , Bicamadas Lipídicas/metabolismo , Mamíferos
4.
Front Immunol ; 15: 1295150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384456

RESUMO

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.


Assuntos
Leucotrieno B4 , Neutrófilos , Salmonella typhimurium , Acetilcisteína/farmacologia , Diamida/farmacologia , Leucotrienos/farmacologia , Fatores Quimiotáticos , Oxirredução , Antioxidantes/farmacologia , Glutationa/farmacologia , Compostos de Sulfidrila/farmacologia
5.
Biophys Rev ; 15(5): 875-885, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37974984

RESUMO

Ferroptosis is a regulated form of necrotic cell death reliant on iron-catalyzed lipid peroxidation. Although the precise involvement of mitochondria in ferroptosis remains incompletely elucidated, recent research indicates that mitochondrial oxidative events wield a pivotal influence in this mechanism. This article centers on the most recent discoveries, spotlighting the significance of mitochondrial lipid peroxidation in the occurrence of ferroptosis. Modern investigative tools, such as mitochondria-specific dyes responsive to lipid peroxidation and antioxidants targeting mitochondria, have been employed to delve into this phenomenon. The authors' recent empirical evidence demonstrates that mitochondrial lipid peroxidation, quantified using the innovative fluorescent ratiometric probe MitoCLox, takes place prior to the onset of ferroptotic cell death. The mitochondria-targeted antioxidant SkQ1 hinders mitochondrial lipid peroxidation and thwarts ferroptosis, all while leaving unaffected the buildup of reactive oxygen species within the cytoplasm, an antecedent to mitochondrial lipid peroxidation. Similarly, the redox agent methylene blue, impeding the genesis of reactive oxygen species in complex I of the electron transport chain, also imparts a comparable protective effect. These findings collectively imply that reactive oxygen species originating from complex I might hold particular significance in fomenting mitochondrial lipid peroxidation, a pivotal trigger of ferroptosis.

6.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628720

RESUMO

Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.


Assuntos
Mitocôndrias , Respiração , Animais , Espécies Reativas de Oxigênio , Envelhecimento , Cardiolipinas , Trifosfato de Adenosina , Mamíferos
7.
Front Cell Dev Biol ; 11: 1048177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009472

RESUMO

Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex. On the one hand, ROS are necessary for cancer progression and epithelial-mesenchymal transition. On the other hand, antioxidants may promote cancer cell survival and may increase metastatic frequency. The role of mitochondrial ROS in cancer development remains largely unknown. This paper reviews experimental data on the effects of both endogenous and exogenous antioxidants on cancerogenesis focusing on the development and application of mitochondria-targeted antioxidants. We also discuss the prospects for antioxidant cancer therapy, focusing on the use of mitochondria-targeted antioxidants.

8.
Cells ; 12(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831278

RESUMO

Ferroptosis induced by erastin (an inhibitor of cystine transport) and butionine sulfoximine (an inhibitor of glutathione biosynthesis) was prevented by the mitochondria-targeted antioxidants SkQ1 and MitoTEMPO. These effects correlate with the prevention of mitochondrial lipid peroxidation, which precedes cell death. Methylene blue, a redox agent that inhibits the production of reactive oxygen species (ROS) in complex I of the mitochondrial electron transport chain, also inhibits ferroptosis and mitochondrial lipid peroxidation. Activation of ROS production in complex I with rotenone in the presence of ferrous iron stimulates lipid peroxidation in isolated mitochondria, while ROS produced by complex III are ineffective. SkQ1 and methylene blue inhibit lipid peroxidation. We suggest that ROS formed in complex I promote mitochondrial lipid peroxidation and ferroptosis.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Azul de Metileno/metabolismo , Mitocôndrias/metabolismo
9.
Bioelectrochemistry ; 150: 108369, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36638678

RESUMO

Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C10) by reaction of triphenylphosphine with decyl bromoacetate. This phosphonium salt precursor of the ester-stabilized phosphorus ylide along with its octyl (CMTPP-C8) and dodecyl (CMTPP-C12) analogues was found to be a carrier of protons in mitochondrial, chloroplast and artificial lipid membranes, suggesting that it can reversibly release hydrogen ions and diffuse through the membranes in both zwitterionic (ylide) and cationic forms. The CMTPP-C10-mediated electrical current across planar bilayer lipid membranes exhibited pronounced proton selectivity. Similar to conventional protonophores, known to uncouple electron transport and ATP synthesis, CMTPP-Cn (n = 8, 10, 12) stimulated mitochondrial respiration, while decreasing membrane potential, at micromolar concentrations, thereby showing the classical uncoupling activity in mitochondria. CMTPP-C12 also caused dissipation of transmembrane pH gradient on chloroplast membranes. Importantly, CMTPP-C10 exhibited substantially lower toxicity in cell culture, than C12TPP. Thus, we report the finding of a new class of ylide-type protonophores, which is of substantial interest due to promising therapeutic properties of uncouplers.


Assuntos
Fósforo , Prótons , Ésteres/análise , Ésteres/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias , Bicamadas Lipídicas/química
10.
Arch Biochem Biophys ; 728: 109366, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878680

RESUMO

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (liposomes), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.


Assuntos
Translocases Mitocondriais de ADP e ATP , Fosforilação Oxidativa , Trifosfato de Adenosina , Aldeído-Desidrogenase Mitocondrial , Animais , Ésteres , Células HEK293 , Humanos , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Ratos , Umbeliferonas , Desacopladores
11.
J Cell Physiol ; 237(5): 2345-2356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253232

RESUMO

Mitochondria are dynamic organelles that regulate various intracellular signaling pathways, including the mechanisms of programmed cell death, differentiation, inflammation, and so on. Mitochondria may be extruded as membrane enveloped or as free organelles during developmental processes, inflammatory activation, and in the process of "garbage clearance" of damaged mitochondria in postmitotic cells. Extracellular mitochondria can be engulfed by immune and nonimmune cells and trigger intracellular signaling leading to an inflammatory response. At the same time, it was reported that the release of extracellular vesicles containing mitochondria from mesenchymal stem cells contributes to their therapeutic anti-inflammatory effects. Numerous studies claim that engulfed mitochondria improve cellular bioenergetics, but this assumption requires further investigation. This review aims at a critical discussion of the mechanisms of mitochondrial extrusion in mammals, the reception of mitochondrial components, and the responses of recipient cells to extracellular mitochondria.


Assuntos
Mitocôndrias , Mitofagia , Animais , Comunicação Celular , Inflamação/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Organelas/metabolismo
12.
Biochemistry (Mosc) ; 87(12): 1634-1639, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717452

RESUMO

The hypothesis is proposed that activation of innate immunity is the primary mechanism of phenoptosis (programmed death of an organism). In support of the hypothesis, we discuss (i) the data on active release of signaling molecules from the cell producing excessive inflammation; (ii) the data on contribution of mitochondrial production of reactive oxygen species to immune response.


Assuntos
Imunidade Inata , Inflamação , Humanos , Transdução de Sinais , Mitocôndrias
13.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948277

RESUMO

In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.


Assuntos
Altruísmo , Apoptose/imunologia , Imunidade Inata/imunologia , Animais , COVID-19/imunologia , Morte Celular/imunologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/mortalidade , Humanos , Inflamassomos/imunologia , Inflamação/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/imunologia
15.
PLoS One ; 15(4): e0226862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32287270

RESUMO

SESN2 is a member of the evolutionarily conserved sestrin protein family found in most of the Metazoa species. The SESN2 gene is transcriptionally activated by many stress factors, including metabolic derangements, reactive oxygen species (ROS), and DNA-damage. As a result, SESN2 controls ROS accumulation, metabolism, and cell viability. The best-known function of SESN2 is the inhibition of the mechanistic target of rapamycin complex 1 kinase (mTORC1) that plays a central role in support of cell growth and suppression of autophagy. SESN2 inhibits mTORC1 activity through interaction with the GATOR2 protein complex preventing an inhibitory effect of GATOR2 on the GATOR1 protein complex. GATOR1 stimulates GTPase activity of the RagA/B small GTPase, the component of RagA/B:RagC/D complex, preventing mTORC1 translocation to the lysosomes and its activation by the small GTPase Rheb. Despite the well-established role of SESN2 in mTORC1 inhibition, other SESN2 activities are not well-characterized. We recently showed that SESN2 could control mitochondrial function and cell death via mTORC1-independent mechanisms, and these activities might be explained by direct effects of SESN2 on mitochondria. In this work, we examined mitochondrial localization of SESN2 and demonstrated that SESN2 is located on mitochondria and can be directly involved in the regulation of mitochondrial functions.


Assuntos
Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Células A549 , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Fracionamento Celular , Respiração Celular , Citosol/metabolismo , Humanos , Espécies Reativas de Oxigênio
16.
Biochim Biophys Acta Bioenerg ; 1861(8): 148210, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305410

RESUMO

An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Naftoquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/metabolismo , Compostos de Fósforo/química , Espécies Reativas de Oxigênio/química
17.
Proc Natl Acad Sci U S A ; 117(12): 6491-6501, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152094

RESUMO

The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.


Assuntos
Envelhecimento , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Quirópteros , Creatina/metabolismo , Transporte de Elétrons , Embrião de Mamíferos , Glucose/metabolismo , Hexoquinase/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos-Toupeira , Especificidade de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
18.
Oxid Med Cell Longev ; 2020: 3631272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104531

RESUMO

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.


Assuntos
Peroxidação de Lipídeos/fisiologia , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Animais , Cardiolipinas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia
19.
Biomolecules ; 10(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075319

RESUMO

Appending a lipophylic alkyl chain by ester bond to fluorescein has been previously shown to convert this popular dye into an effective protonophoric uncoupler of oxidative phosphorylation in mitochondria, exhibiting neuro- and nephroprotective effects in murine models. In line with this finding, we here report data on the pronounced depolarizing effect of a series of fluorescein decyl esters on bacterial cells. The binding of the fluorescein derivatives to Bacillus subtilis cells was monitored by fluorescence microscopy and fluorescence correlation spectroscopy (FCS). FCS revealed the energy-dependent accumulation of the fluorescein esters with decyl(triphenyl)- and decyl(tri-p-tolyl)phosphonium cations in the bacterial cells. The latter compound proved to be the most potent in suppressing B. subtilis growth.


Assuntos
Membrana Externa Bacteriana/efeitos dos fármacos , Fluoresceína/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Fluoresceína/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Federação Russa , Espectrometria de Fluorescência/métodos
20.
Mitochondrion ; 50: 139-144, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669237

RESUMO

In this article we present clinical, molecular and biochemical investigations of three patients with LHON caused by rare point substitutions in mtDNA. One patient harbours the known mtDNA mutation (m.13513 G>A), the others have new variants (m.13379 A>G in MT-ND5 gene and m.14597 A>G in MT-ND6 gene, which has never been previously associated with LHON). NGS analysis of a whole mtDNA derived from patient's blood revealed a low mutation load (24%, 47%, 23% respectively). Our data, including family segregation analysis, measurement of reactive oxygen species (ROS) production and cytotoxic effect of paraquat and high-resolution respirometry, showed that nucleotide variant m.14597 A>G can be classified as pathogenic mutation.


Assuntos
DNA Mitocondrial/genética , Heteroplasmia , Atrofia Óptica Hereditária de Leber/genética , Mutação Puntual , Adulto , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Herbicidas/farmacologia , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Paraquat/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...